
Asymptotic analysis of Triple State Quicksort
Ammar Muqaddas

ammar.mu@ku.edu.kw

ammar.mu@gmail.com

Average case
On the average, a classical Quicksort uses:

comparisons nnn 8456.2)ln(2 −≈ [3] (1)

swaps nnn 58.0)ln(33.0 −≈ [4] [5] (2)

Before proceeding with the analysis for our algorithm, please note that there are a few assumptions to
be made, refer to references [1] [2] [3] .

The analysis in [3] can be applied reasonably to Triple State Quicksort, leading to the same average
number of comparisons 2n ln(n) – 2.8456n.

For the number of swaps, Our algorithm does NOT do swaps literally but element copies instead (most
of the time), the only way to compare it to other algorithms (that do swaps) is to have an equivalent
measure. Since a swap is composed of 3 element copy operations, we can say that swaps = copies / 3. So
we can convert the number of copy operations that our algorithm does to equivalent virtual swaps by
dividing over 3. Surely this equivalence is not exact since one might argue that copying from/to a
temporary variable (in a swap) is different from copying from/to memory locations. But it still gives a
reasonable indication.

It has been shown in [1] that the number of swaps in a single Quicksort recursive stage is:

n

n

6

5

6
+ (3)

Since each swap involves two elements. The number of elements copied in our algorithm is twice as
much swaps. Adding one final copy operation to copy back the temp element then converting the number
of copies to virtual swaps by dividing by 3. Gives:

3

1

9

5

9
1

6

5

6
2

3

1
+







+=








+







+⋅

n

n

n

n

Notice here that we don’t need to add 1 copy for copying back pivot p since that’s already included in
(3) part of a full swap. The average number of swaps Sn can be expressed as:

∑
−

=

−−+++







+=

1

0

1)(
1

3

1

9

5

9

n

k

knkn SS
nn

n
S

Since ∑∑
−

=

−−

−

=

=
1

0

1

1

0

n

k

kn

n

k

k SS , we can rewrite:

∑
−

=

++







+=

1

0

2

3

1

9

5

9

n

k

kn S
nn

n
S

Multiplying by n.

∑
−

=

++







+=

1

0

2
39

5

9

n

k

kn S
n

n

n
nnS (4)

substituting n by n-1

∑
−

=

+
−

+








−
+

−
−=−

2

0

2
3

1

)1(9

5

9

1
)1()1(

n

k

kn S
n

n

n
nSn (5)

Subtracting (5) from (4) and simplifying would finally yield









+








+= −1

9

21
1 nn S

n
S

We know that S2 = 0.5 since a two elements random array will have the same probability of being
already sorted or reversed. Solving the recurrence relation above with initial condition S2 = 0.5 results:

)1(
6

11
)1(

9

2

1

+−+= ∑
=

n
k

nS
n

k

n

We know that ∑
=

=
n

k

n
k

H
1

1
 were nH is the nth harmonic number. We can rewrite Sn as:

)1(
6

1
)1(

9

2
+−+= nHnS nn (6)

We also know that nH can be approximated:

n
nH n

2

1
)ln(++≈ γ

Were 0.5772≈γ is the Euler–Mascheroni constant. Substituting back in (6).

)1(
6

1

2

1
)ln()1(

9

2
+−








+++= n

n
nnSn γ

18

1

9

2

9

1
)ln(

9

2

6

1

9

2
)ln(

9

2
−+++








−⋅+=

γγ

n
nnnn

nnnSn 038.0)ln(222.0 −≈ (7)

It can be shown by trivial math that Sn in (7) is less than the average swaps in (2) of classical Quicksort
for all n > 139.

Worst case
Quicksorts worst case is of O(n

2
). This is true for any Quicksort including our algorithm as long as it

does pivot selection and has a divide and conquer algorithm. The worst case happens when the pivot is
consistently equal or near the maximum or minimum of the elements in the array in every recursive
stage. However, for an advanced Quicksort that handles equal elements correctly, the probability of the
worst case happening is pretty slim in practice. For example, if the pivot selection was done at random or
input array is a random permutation. Then the probability that the pivot is maximum or minimum in a
single stage is 2/n. Since there are about n recursive stages in a Quicksort binary tree. The probability of
all stages selecting minimum or maximum pivot will be:

n

nn

nn
caseworstp

22
]_[=








≈

n
n
 is much larger than 2

n
 for even as low as n=5. Hence the extremely low probability.

REFERENCES

[1] Hoare, C. A. R. "Quicksort". Comput. J. vol. 5, 1962, pp. 10–16.

[2] Sebastian Wild, Markus E. Nebel, Ralph Neininger. “Average Case and Distributional Analysis of Java 7’s Dual Pivot
Quicksort”

[3] JACEK CICHON, "QUICK SORT - AVERAGE COMPLEXITY"

[4] Robert Sedgewick “The analysis of Quicksort programs.” Acta Inf. 7(4) (1977) pp 327–355

[5] Sebastian Wild and Markus E. Nebel. “Average Case Analysis of Java 7’s Dual Pivot Quicksot”.

